owned this note
owned this note
---
tags: cofacts
---
# Cofacts multimedia support research
## Retrieving file data
https://developers.line.biz/en/reference/messaging-api/#get-content
## Search & indexing
- Research: all image retrieval methods https://g0v.hackmd.io/bhL6csQ8T1e81E2De7ZS5Q#Search-with-similarity
- Image hash bit length https://g0v.hackmd.io/LHhF_VQ1RdS12C0k0ESQ_Q
- Indexing in hamming space https://g0v.hackmd.io/xsDcMPySQM69vA0xHO8_dA#Indexing
- Large-Scale Video Retrieval Using Image Queries - 介紹 https://www.youtube.com/watch?v=tLqbdQR7kjM
- 見下 vectors / documents 章節
### Hashed file names
[The OpenDream's approach](https://github.com/cofacts/rumors-line-bot/issues/7#issuecomment-890709756).
- Convert each reported image / video to perceptual hash (fingerprint) stores the file using the hash in its name.
- hash: https://www.npmjs.com/package/image-hash
- [image-hash research](https://g0v.hackmd.io/LHhF_VQ1RdS12C0k0ESQ_Q)
- During query, convert the query image / video in the same way and look up for the file with the same name in Google Drive directly.
- Query is performed on client side (chatbot), did not take 3rd party applications into consideration.
Hash for other file formats
Videos
- ffmpeg extract
```
# skip_frame: https://superuser.com/questions/669716/how-to-extract-all-key-frames-from-a-video-clip
# remove dup: https://stackoverflow.com/questions/37088517/remove-sequentially-duplicate-frames-when-using-ffmpeg
ffmpeg -threads 1 -skip_frame nokey -lowres 3 -i [video-file] -vf mpdecimate -vsync 0 -f image2 output/file-%04d.jpg
```
- https://www.npmtrends.com/ffmpeg-vs-ffmpeg-static-vs-ffmpeg.js-vs-fluent-ffmpeg-vs-@ffmpeg/ffmpeg
Audios
- chromaprint (fpcalc)
- 越長的檔案 fingerprint 就越長
### Vector / embedding based similarity
#### Systems supporting vector search
- OpenSearch KNN https://opensearch.org/docs/latest/search-plugins/knn/index/
- ElasticKNNs https://github.com/alexklibisz/elastiknn
- Elasticsearch 8.6
- [`dense_vector` fields](https://www.elastic.co/guide/en/elasticsearch/reference/8.6/dense-vector.html)
- Max dimension: 1024 for indexed vectors
- Indexing are for Approximate kNN
- Exact, brute-force knn w/ scripted score and `cosineSimilarity()` function
- [Approximate kNN w/ HNSW algorithm](https://www.elastic.co/guide/en/elasticsearch/reference/8.6/knn-search.html#_combine_approximate_knn_with_other_features)
- can [combine with ordinary query](https://www.elastic.co/guide/en/elasticsearch/reference/8.6/knn-search.html#_combine_approximate_knn_with_other_features) and calculate score together
- Official guides
- https://www.elastic.co/guide/en/elasticsearch/reference/8.6/knn-search.html
- Blog post: https://www.elastic.co/blog/how-to-deploy-nlp-text-embeddings-and-vector-search#
- Upload Python model on Huggingface to Elasticsearch https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-text-emb-vector-search-example.html
- Does not support image-related models ([reference](https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html#:~:text=Specify%20the%20type%20of%20NLP%20task.%20Supported%20values%20are%20fill_mask%2C%20ner%2C%20text_classification%2C%20text_embedding%2C%20and%20zero_shot_classification.))
#### Systems / software for near duplicate video search
- [Near Duplicate Video Retrieval](https://github.com/4ML-platform/ndvr)
- Handles these: side morrored, color-filtered, and waterwashed. Middle row: horizontal screen changed to vertical screen with large black margins. Botton row: rotated
- [videohash](https://github.com/akamhy/videohash)
- Python
- Near Duplicate Video Detection (Perceptual Video Hashing) - Get a 64-bit comparable hash-value for any video.
- Have collisions on unrelated video https://www.reddit.com/r/DataHoarder/comments/q74hkz/videohash_python_package_for_near_duplicate_video/
#### Methodologies
Image / video vectors
- Large-Scale Image Retrieval with Elasticsearch http://nmis.isti.cnr.it/falchi/Draft/2018-SIGIR.pdf
- 2018 SIGIR
- 先把圖變成 R-MAC feature (multi-resolution, dimension=2048)
- 然後想辦法變成可以 encode 成 word 的東西塞進 Elasticsearch
- The VISIONE Video Search System: Exploiting Off-the-Shelf Text Search Engines for Large-Scale Video Retrieval
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321359/
- 影片轉 scene, object, color, CNN descriptors 轉成可以 encode 成 word 的東西
- "Scalar Quantization-based Surrogate Text representation"
- Towards Practical Visual Search Engine Within Elasticsearch https://arxiv.org/pdf/1806.08896.pdf
- 也是轉成 word
- [Fisher vectors](https://youtu.be/tLqbdQR7kjM?t=665)
- compact local descriptor as fixed-length vector, 用在 retrieval 上可做 vector comparison
- Asymmetric comparison of FV - 圖只佔一部分可找(think of image in LINE chat screenshots), 一種 bag of features
- Introduced by Perronnin and Dance, CVPR '07
- [Analyzing Classifiers: Fisher Vectors and Deep Neural Networks](https://openaccess.thecvf.com/content_cvpr_2016/papers/Bach_Analyzing_Classifiers_Fisher_CVPR_2016_paper.pdf)
- IVWBAE2019 - Video indexing and retrieval based on content: a systematic literature review
- [Spreadsheet](https://docs.google.com/spreadsheets/d/1JzuAMTjCmY6zUZLmo-CrVHdhZ9WtCH612pigwYjAg8U/edit#gid=1193420145)
Text embeddings
- [OpenAI text embedding](https://platform.openai.com/docs/guides/embeddings/limitations-risks)
- Dimension = 1536
- normalized to 1 (dot product for cosign similarity)
- pgvector cosine similarity example https://github.com/mckaywrigley/wait-but-why-gpt
- [tf.js Multilingual Universal Sentense Encoder](https://tfhub.dev/google/universal-sentence-encoder-multilingual/3)
- Input: Variable length text in Chinese, Chinese (Taiwan), English, etc
- Output: 512 dimension vector
- [Can compare similarity across languages](https://colab.research.google.com/drive/1aVM8RRxlGGN4YgjOafFl_yAQ4Ms_QNO4?authuser=0)
Multimodal embeddings (image / text embedding)
- Microsoft unilm https://twitter.com/alphasignalai/status/1630651280019292161
- https://arXiv.org/abs/2302.14045
- https://palm-e.github.io/
- Visual foundation models in https://github.com/microsoft/visual-chatgpt
- CLIP
- https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
- Deploy -> Inference API -> JavaScript
- Input layer - max_seq_length: 128
- Output layer - out_features: 512
- https://www.sbert.net/examples/applications/image-search/README.html (seems to support both image and text inputs)
- Facebook multimodal model ImageBind
- https://github.com/facebookresearch/ImageBind
- https://imagebind.metademolab.com/
- Also includes audio & video!
- HF: https://github.com/huggingface/transformers/issues/23240
- Input layer: TBD
#### Analysis
- Benefits
- 無論是 FV 還是 embedding 應都有 locality similarity,裁切或截圖後仍有機會找得到
- 中文簡體繁體、英文原始訊息,有機會被 multilingual text embedding 放在很近的地方而檢索得到
- ==AI 繪圖、無聲音無字幕的影片,透過 multimodal embedding 可能可以達成,輸入文字敘述來搜尋相符圖片的事情==
- Efforts to get these benefits
- Upgrade to ES 8.6 to get access to vector search
- Integrate tf.js or other vector generation methods
- 用在 Cofacts?
- 絕大多數有影響力的圖文都是文字,OCR 會比 embedding 更有用
- 文字搜尋上,embedding 是否有比 bm25 好或好多少,要看 Cofacts dataset 決定
- 即使圖片影片中沒有文字可 OCR,有錯的通常是在圖說。這樣一來,[surrounding text](https://g0v.hackmd.io/@cofacts/rd/%2Ff_Ze19PhQuqx_fzOAOkohQ) 又比 vector search 重要。
## File storage & hosting
### Google drive
[The OpenDream's approach](https://github.com/cofacts/rumors-line-bot/issues/7#issuecomment-890709756).
### Google cloud storage
## Database model
Considerations:
- Store surrounding text?
- Store text content of the image / video / voice message for full-text search
:::success
Prefer "In separate `articles`" - [discussion](https://g0v.hackmd.io/1WADYBY0TH27ZqOaVMjqUg?both#Overall-discussion)
:::
### Use `articles`
[The OpenDream's approach](https://github.com/cofacts/rumors-line-bot/issues/7#issuecomment-890709756).
Article text does not contain anything but `$image__xxx`
No surrounding text & text content for full-text search.
### In `articles.attachments`
One article stores:
- `attachments`: attachment data and its trasncription text for full-text search
- Therefore search queries should also look up this field
- highlights should also consider this field in addition
- `text`: the surrounding text
### ✅ In separate `articles`
One article stores:
- `attachment`: the multimedia data
- `text`: its transcription for full-text search
Another article stores:
- `text`: the surrounding text
Connect related articles together in other ways
- Easier search (no extra field) but associations after search hit may be complex
- Should seek replies in related article and display?
### Separate MediaEntry index
Article stores only
- text, which is the transcription for full-text search
New index `mediaentries` stores:
- _id: the `hash`
- `articleId`: maps to the article storing the transcription and replies
- `url`: the URL to the file on GCS
- Other feature vectors for similar image retrieval
- Other meta data like media type
Pros
- Each hash can only map to 1 media entry
- Cannot have 2 articles having same hash
- Faster query time by hash
- Super fast retrieval by hash (by ID, no index time)
- faster time to retrieve by feature vector due to fewer documents to scan / index
- Can be separated from Cofacts article logic
- Media manager can just feed an Elastic client to media manager
- Media manager can manage the index by itself
Cons
- Still possible to have 2 articles created
- Process: Search `mediaentries` index --> If no, create article --> write `mediaentries` index
- It is still a non-atomic read-then-write, so article creation is still possible
- If this occurs, there will be a empty article with no media entries pointing to it.
- Cannot mix image & text query together
- Increased complexity of managing a separate index
### Surrounding text (cooccurrence) model
#### Separate ArticleGroup index
- Create another index, `articlegroups`, to place co-occurrences of article groups.
- ID: sorted article IDs --> unique ID for the same composition
- Does *not* have dedicated reply-request and replies
- Just records a link
- Q: If a reply is used in multiple articles in the same group, when user gives feedback, whose article-reply-feedback is this?
Processing multiple messages on LINE bot
#### Article group as an `article`
- No `text` nor `attachment`, but has an `articleIds` field pointing to ID of individual articles
- Has its own reply requests & replies
#### Common problems
- How to count occurrences / popularity of a specific article group
## Processor model
### Handle in rumors-line-bot
OpenDream's approach: search logic, hashing is done on line bot
### ✅ Dedicated multimedia processor
:::success
Design doc: [Cofacts media manager implementation](/C8dW2cFiR1-N5Z0wcOefuA?both)
:::
- Add-on of current API server
- API server can serve multiple clients
- can limit access of related API using API kjeys
- Can be implemented stand-alone
- Replace current google drive first
- Article integration can come later
input:
- URL to fetch data
- should insert or just query
output:
list of deduped
- public file url
- identifier
- similarity (1 for exact match)
processing:
- The processor handles download, storage, resolving and search function.
- It stream uploads the file onto google cloud storage.
- [OPTIONAL] It caches file content of an URL for a short while, so that query --> create via same URL works smoothly
----
### Processor implementation
See [Cofacts media processor implementation](/C8dW2cFiR1-N5Z0wcOefuA)
## Other topics
### stream file convert
- Image: https://www.npmjs.com/package/sharp
- Video
- https://github.com/fluent-ffmpeg/node-fluent-ffmpeg
- https://github.com/phaux/node-ffmpeg-stream
### Transcriptions
Crowd-sourced transcription tools & developments
https://crowdsourcingweek.com/blog/decade-in-crowdsourcing-transcription/
https://anjackson.github.io/zombse/062013%20Libraries%20&%20Information%20Science/static/questions/826.html
Amara API - https://apidocs.amara.org/#list-videos
The crowd-sourced project of Library of Congress - https://crowd.loc.gov/
Design principles: https://github.com/LibraryOfCongress/concordia/blob/main/docs/design-principles.md
Crowdsourcing the transcription of digitized archival records - https://ctasc.blog.yorku.ca/2020/04/14/crowdsourcing-the-transcription-of-digitized-archival-records/
Wikipedia rules
- vandalism https://zh.wikipedia.org/wiki/Wikipedia:%E7%A0%B4%E5%9D%8F
- revert https://zh.wikipedia.org/wiki/Help:%E5%9B%9E%E9%80%80
### OCR
[Originally on chatbot](https://github.com/cofacts/rumors-line-bot/blob/dd0a007e23f65d0fd8e1705baec290a1bf013361/README.md#process-image-messageusing-tesseract-ocr):
- tesseract-ocr binary in docker
- store file in file system and let the process read
[tesseract.js](https://github.com/naptha/tesseract.js)
- Can work on nodejs and browser
- works slower than tesseract-ocr [name=nonumpa]
[MMOCR](https://github.com/open-mmlab/mmocr) - python based
[Google cloud vision API](https://cloud.google.com/vision/docs/ocr?hl=zh-tw)
- ![](https://s3-ap-northeast-1.amazonaws.com/g0v-hackmd-images/uploads/upload_ba39a2e37de4637d36cec59ecbd1851d.png)
- [Support](https://googleapis.dev/nodejs/vision/latest/v1.ImageAnnotatorClient.html#documentTextDetection) local image (local file name / base64 encoded string) and remote file (gcs or URL; currently in use)
- Supports Google image search via [web entity & pages detection](https://cloud.google.com/vision/docs/detecting-web)
#### When to apply OCR
- when image search yields no hit?
- or everytime when image is provided? (chatbot original)
- On chatbot v.s. on API
- When user inputs OCR text, on website?
### Metadata extraction
Following up above info, we can extend OCR to other metadata, and further discuss when should we apply these extractions
#### What to extract
- metadata like duration in https://g0v.hackmd.io/@cofacts/rd/%2FC8dW2cFiR1-N5Z0wcOefuA
- OCR text for video and image
- [multimodal embeddings / feature vectors](#Vector--embedding-based-similarity)
- For video, we can extract screenshot with shot detection, which can be helpful to search for similar video and search engine optimization.
#### When to extract
- After ID is extracted by media manager?
- Pros:
- We can cache ID <> extracted info; when cache hits, don't need to perform extraction again, which may cost money and resources
- Not all multimedia content are store in`articles` in Elasticsearch. cache IDs can be more flexible and may have search hit on popular search queries
- Cons:
- Slow -- download media twice (1 for ID, another for actual extraction) if ID cache miss
- Complicates the system by additional cache lookup mechanism
- Extract in media manager?
- Introduce new concept, *processors*, that is called alongside with [hash generation](https://github.com/cofacts/media-manager/blob/4b3b9a87ca4241f6e34b9fe6d980f8a1065b3b21/src/MediaManager.ts#L93-L94)
- Output of processors (extracted info or vectors) are attached to `queryInfo`
- Media manager does not store the extracted info itself.
- Pros:
- Cleaner implementation that separates API and media logic work
- Cons:
- Cannot implement cache
- Media manager only records media that should be saved
- Implemeting one will have the same complication as the previous solution
- Extraction is made again and again for even the same binary
- Limits the methods we use in extraction in terms of cost; only choice for OCR may be tesseract.js
#### How to extract
[Google Video Intelligence API](https://cloud.google.com/video-intelligence/docs/annotate-video-command-line?hl=en)
- API
- [shot change detection](https://cloud.google.com/video-intelligence/docs/analyze-shots)
- [recognize text](https://cloud.google.com/video-intelligence/docs/text-detection)
- Also support [base64 content](https://cloud.google.com/video-intelligence/docs/base64)
- However, using it at query time may not be practical, because we need to ingest whole video to generate base64 string
- If we just take first 10 second, we can just take the screenshot of 5th second and [OCR](https://g0v.hackmd.io/wkx286lmTDaFUpgRhnUawQ?both#OCR) ($1.5 per 1000 pics) instead, no need for Video Intelligence API
- [Visualizer](https://github.com/ZackAkil/video-intelligence-api-visualiser)
- [Pricing](https://cloud.google.com/video-intelligence/pricing?hl=en) ![](https://s3-ap-northeast-1.amazonaws.com/g0v-hackmd-images/uploads/upload_6a8efe71436885d9632f297491c64d1a.png)
- [Test result analysis](https://docs.google.com/spreadsheets/d/1wU1kqIiNPsIjb9OeaMxCnbYv2hfGP-0rvXCYAaD9qh0/edit#gid=0)
- [Colab](https://colab.research.google.com/drive/18vFKlut5HBanhd-mLagD4ug-oE9F8nlt)
- Result files: `gs://cofacts-transcriptions-test/video-intelligence`
### Video summarization for thumbnails
Video summarization / abstraction / skimming
- Directly from 25% - 75% length - https://blog.logrocket.com/generating-video-previews-with-node-js-and-ffmpeg/
- Youtube:
- Home page (https://www.youtube.com/) - 150% speed from 0:00
- Recommendation list: fade in from thumbnail, pick 4 seconds of the video, 150% speed, loop
- DSNet - https://github.com/li-plus/DSNet
- Paper 裡有整理 related work
- Related work 整理 https://github.com/seriousran/awesome-video-sum
- ffprobe to get duration https://www.npmjs.com/package/ffprobe
- Google video intelligence API: see [above](https://g0v.hackmd.io/aJqHn8f5QGuBDLSMH_EinA?both#How-to-extract)
- Can use the shot detection and timestamp to generate summarizations
- Google transcoding API (contains sprite)
- 指定要轉的解析度、轉完放哪裡。轉換[算便宜](https://cloud.google.com/transcoder/pricing) (0.015/min for SD thumbnail),儲存就是 GCS
- 直接有 sprite sheet! https://cloud.google.com/transcoder/docs/how-to/generate-spritesheet#generate_image_periodically
- Google lens 可以只選一幀出來 ![](https://s3-ap-northeast-1.amazonaws.com/g0v-hackmd-images/uploads/upload_05dc6db86196cb855046859d5e151d3d.png)
- 跟 bucket、cloud function 串在一起: https://cloud.google.com/use-cases/video-on-demand?hl=en#features
- 輸出檔案:
- Thumbnail 放 360p 影片, 前 20s、15fps 在 [client side `<video>`](https://developer.mozilla.org/en-US/docs/Web/API/HTMLMediaElement/defaultPlaybackRate) 加速到 2x
- Preview 放 sprite,每隔幾秒一格
- 形式
- media manager 上傳原始檔案之後,GCS bucket file change 觸發 cloud function
- cloud function 呼叫 transcoding API (batch mode)
- 檔案回存到同一個 GCS bucket file 資料夾底下,未來 rumors-api 與 media manager 可以讀得到該 variant
- 缺點
- 沒有辦法拿影片長度之類的 metadata,但這可以另外呼叫 ffprobe 搞定
- [Cloudflare Stream](https://developers.cloudflare.com/stream/)
:::spoiler
- 儲存費用每月付 ![](https://s3-ap-northeast-1.amazonaws.com/g0v-hackmd-images/uploads/upload_7f2a3f0cbc63b4d3c7200e0893262431.png)
- 假設每個影片 1min,Cofacts 已經有 9214 video / audio --> 9000 min,$50/mo 的範圍
- 播放費用另計,但如果只有查核協作者可以播放的話就會很省
- 目前看起來,關於 thumbnail:
- thumbnail 好像不算錢,只有靜止的跟 gif(限 15s 內、fps 限制 1~15)
- thumbnail 是 request 來才會即時生成,如果是 gif 的話可能要生數秒鐘,產出十幾 MB 的 gif 送到瀏覽器
- thumbnail 可以指定開始播放的時間,但無法調整播放速度
- 另外關於影片檔案:
- 檔案可以做 signedUrl,所以可以在 rumors-api 產出 signed URL 吐在 attachmentUrl 裡頭,也可以在裡面放 thumbnail URL
- 可以生成指定長度的 clip 限制播放時長
- 要用的話,一般的做法:
- 訊息列表 thumbnail: 用 cloudflare 的 gif thumbnail
- 未登入造訪訊息內頁 preview: 用 cloudflare 的 iframe stream player 播放 30s clip
- 登入後的使用者可以拿到 original,用 cloudflare 的 iframe stream player 播放原長度影片
- 更省的做法:
- 訊息列表 thumbnail: 用 cloudflare 的靜止 thumbnail(jpg,較小)
- 未登入造訪訊息內頁 preview: 用 cloudflare 的 gif thumbnail 15s (不用錢,但應該要生一陣子)
- 登入後的使用者可以拿到 original,用 cloudflare 的 iframe stream player 播放原長度影片
- 附加好處
- 可以透過 cloudflare retrieve video detail API 拿到影片時長
- 因為有 on-the-fly 的 thumbnail URL 可以用,因此未來如果接了 google video intelligence API 偵測 shot changes,甚至可以做到列出影片分段截圖的功能,對查核影片會超級方便——點擊截圖跳到那個分段、對截圖右鍵來用瀏覽器內建功能以圖找圖等等。
:::
- Problem [Discussion source](https://g0v.hackmd.io/ucUXvnqbRBmsD6YGkmdYvg?both#Comm-Thumbnails-for-video-and-audio)
- 目前沒登入就無法看影片。上傳色情影片,沒登入就看不到,預覽圖下 google 抓到的機率更大 [name=nonumpa]
- 可能就是要上 video intelligence API [name=mrorz]
### Videos on Youtube / links
#### [Youtube data API](https://developers.google.com/youtube/v3)
- has all metadata, including duration, title, description, etc
- cannot store data for more than 30 days
- Policy #: III.E.4.a-g ([Refreshing, Storing, and Displaying API Data](https://developers.google.com/youtube/terms/developer-policies#e.-handling-youtube-data-and-content))
- Previous mitigations and research: [Youtube scrapping alternatives](/6f87Zwo7QAOGx7rYK-QRfw)
#### oembed
- Sample: https://youtube.com/oembed?url=http://www.youtube.com/watch?v=iwGFalTRHDA&format=json
- Has title, author (not stored)
- url-resolver saves Youtube description via `unfurl` and `<meta description>`
#### schema.org microdata
:::success
Should implement this!
- Store parsed schema.org metadata in hyperlinks as-is
- Find a way to properly display the metadata
- Drop oembed if all data is in Microdata?
:::
- Youtube implements [VideoObject](https://schema.org/VideoObject)
- [Contains property](https://validator.schema.org/#url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DlSKd3yyhzw0)
- `url`, `name`, `description`, `thumbnailUrl`, `embedUrl`
- `duration`
- [`interactionCount`](https://schema.org/interactionCount) - slightly less than play count, not sure why
- `datePublished`, `uploadDate`
- `author.name`, `author.url`
- Example: `view-source:https://www.youtube.com/watch?v=lSKd3yyhzw0`
-`<meta itemprop="duration" content="PT31M55S">`
- Format: [ISO8601 duration](https://en.wikipedia.org/wiki/ISO_8601#Durations)
- `cofacts/url-resolver` uses `unfurl`, which [supports custom `fetch`](https://github.com/jacktuck/unfurl/blob/master/src/index.ts#L47) (`node-fetch` instance)
- We can store fetched result outside `unfurl` and parse microdata outside of unfurl.
- microdata parser: https://www.npmjs.com/package/microdata-node or [others](https://www.npmjs.com/search?q=keywords%3Amicrodata&ranking=optimal)
- Additional info: Rumble also implements `VideoObject` with the [following properties](https://validator.schema.org/#url=https%3A%2F%2Frumble.com%2Fvx2dga-55538074.html):
- `url`, `name`, `thumbnailUrl`
- `duration`
- `uploadDate`
- `interactionStatistics.userInteractionCount`
- `interactionStatistics.interactionType`
- Additional info: tiktok?
#### Crowdsourced metadata
Maybe allow users to manually input things on `hyperlinks` doc?
### Visualizing audio
- Waveform in SVG in browser
- https://www.npmjs.com/package/audio-waveform-svg-path
- give a URL and it will download & draw